
EAST-ADL Native Behavior
Specification

Concept Presentation
2013

Dr. DeJiu Chen

chen@md.kth.se

Motivations
 To address some fundamental issues in systems engineering

 Requirements engineering
 Are the requirements and their assumed operation situations correctly stated?
 Are the requirements consistent/complete in regard to each other or other derived requirements?

 Architecture design and specification
 How to specify contracts of functions/components in regard to behavior bounds and invariants?

• e.g. data trajectories, value invariants and transfer equations, states and state transitions.
 How to specify the impacts of vehicle modes on functions/components and resource deployment?
 How to support the traceability in regard to behavior concerns from requirements to design solutions at

multiple abstraction levels?
 What are the semantics of feature-links and function realizations?

 Analysis for functionality and nonfuntionalities
 Do behaviors at different abstraction levels conform to each other? What are the effect of emergent

behaviors at a lower level?
 What are the compostionality and composability of functions/components?
 Is the system deadlock free according to the chosen execution scheme?
 How does a system react to faults/failures in combination with nominal stimuli? How to support fault-

injection?
 Verification and validation

 How to derive test cases as well as the coverage criteria?

2013 Concept Presentation

Motivations (Cont.)
 In particular, the following language support is considered important

for FEV (Fully Electrical Vehicles)
 precise definitions of temporal characteristics for the definition and analysis of safety

constraints
 assessment of completeness and correctness of the safety requirements
 descriptions of driving profiles, physical dynamics, power management procedures, fault

tolerance design
 generation and precise definition of test cases

 It is seldom the case that a single tool would cover all these issues.
 EAST-ADL as a common framework for the integration of external mature

formalisms and architecture design specification
 Declarations and management of architectural concerns vs The definitons of analytical models

for analysis leverage

2013 Concept Presentation

EAST-ADL native behavior specification

 Supporting three categories of behavior constraints.

 It is up to the users of EAST-ADL, in their particular design and analysis
contexts, to decide the exact types and degree of constraints to be applied.

2013 Concept Presentation

Attribute Quantification
Constraint

relating to the declarations of value attributes and the
related acausal quantifications (e.g., U=I*R).

Temporal Constraint

relating to the declarations of behavior constraints
where the history of behaviors on a timeline is taken
into consideration.

Computation Constraint

relating to the declarations of cause-effect
dependencies of data in terms of logical
transformations (for data assignments) and logical
paths.

Roles of native behavior constraints
To provide enhanced EAST-ADL support in regard to the following
tasks
 Refining textual statements of requirements and the assumed operation

situations for safety engineering and test case generation.
 Specifying the data and behavior assumptions of vehicle features for a

more precise reasoning about feature configuration.
 Specifying the contracts of acceptable behaviors of system functions

together with their execution policies.
 Specifying process and physical dynamics in environment and hardware

platform
 Specifying mode logics and the related application behaviors and system

services.
 Specifying faulty conditions, erroneous states and transitions for fault-

tolerance design and fault injections.

2013 Concept Presentation

An illustration of the roles of behavior constraint
description
 Basic structure of EAST-ADL models

2013 Concept Presentation

External Model

 Behavior (execution
centric)

V&V CasesReaquirements
Model

 Architecture Model

Impl Level(AR)

Design Level

Analysis Level

Vehicle Level

<<VehicleFeature>><<VehicleFeature>><<Function
Behavior>>

<<VehicleFeature>><<VehicleFeature>><<Function Trigger>>
<<realize>>

Environment
Model

<<realize>>

<<realize>>

<<DerivedFrom>>

<<DerivedFrom>>

<<Satisfy>>

<<Satisfy>>

<<Satisfy>>

<<Satisfy>>

<<Verify>>

<<Verify>>

<<Verify>>

<<DerivedFrom>>

<<VehicleFeature>><<VehicleFeature>><<Mode>>

Dependability Model

<<VehicleFeatur
e>><<VehicleFeatur

e>>ErrorModel

<<VehicleFeatur
e>><<VehicleFeatur

e>>Safety
Constraints

Timing Model

<<VehicleFeatur
e>><<VehicleFeatur

e>>Execution Events

<<VehicleFeatur
e>><<VehicleFeatur

e>>Execution Timing
Constriants

Augmenting&constraining

allocatedTo

defining

<<Verify>>

Augmenting&constraining

Roles of native behavior constraints - III

2013 Concept Presentation

External Model

 Behavior (execution
centric)

V&V CasesReaquirements
Model

 Architecture Model

Impl Level(AR)

Design Level

Analysis Level

Vehicle Level

<<VehicleFeature>><<VehicleFeature>><<Function
Behavior>>

<<VehicleFeature>><<VehicleFeature>><<Function Trigger>>
<<realize>>

External BehaviorModel - IVExternal BehaviorModel - I External BehaviorModel - III

Environment
Model

<<realize>>

<<realize>>

<<DerivedFrom>>

<<DerivedFrom>>

<<Satisfy>>

<<Satisfy>>

<<Satisfy>>

<<Satisfy>>

<<Verify>>

<<Verify>>

<<Verify>>

<<DerivedFrom>>

<<VehicleFeature>><<VehicleFeature>><<Mode>>

Dependability Model

<<VehicleFeatur
e>><<VehicleFeatur

e>>ErrorModel

<<VehicleFeatur
e>><<VehicleFeatur

e>>Safety
Constraints

Timing Model

<<VehicleFeatur
e>><<VehicleFeatur

e>>Execution Events

<<VehicleFeatur
e>><<VehicleFeatur

e>>Execution Timing
Constriants

Augmenting&constraining

allocatedTo

defining

<<Verify>>

Augmenting&constraining

 Behavior Constraint

Refining
requirements

Generating
test cases

Specifying the data
bounds and

behavior
assumptions

Specifying the
contracts

of acceptable
behaviors

Specifying mode
logics and related

Application&system
behaviors

Specifying error
behaviors for formal

anaysis, fault-
tolerance and
fault injections

Specifying process
and physical dynamics

allocatedTo

Integrating different behaviors and external formalisms

Modeling constructs for behavior constraints and
their targets

2013 Concept Presentation

class Behav iorContraintsExternalMapping2

EAElement
Behav ior::Mode

+ condition :String

EAElement
Behav ior::FunctionTrigger

+ triggerCondition :String
+ triggerPolicy :TriggerPolicyKind

Context

«atpType»
Behav iorConstraintType

RequirementsRelationship
Requirements::Refine

Context
Behav ior::FunctionBehav ior

+ path :String
+ representation :FunctionBehaviorKind

Feature
VehicleFeatureModeling::VehicleFeature

+ isCustomerVisible :Boolean
+ isDesignVariabil ityRationale :Boolean
+ isRemoved :Boolean

Context

«atpType»
FunctionModeling::FunctionType

+ isElementary :Boolean

EAElement
ErrorModel::ErrorBehav ior

+ failureLogic :String [0..1]
+ type :ErrorBehaviorKind

inherited link: Refine->
EAElement

+function

0..1

+constrainedErrorBehavior

*

+constrainedModeBehavior

0..*

+refinedBehaviorConstraint 0..*

+constrainedFunctionTrigger
0..*

+targetedVehicleFeature

*

+constrainedFunctionBehavior

0..*

+function

0..1

+targetedFunctionType

0..*

Behavior constraints for
declaring, merging, and
tracing, different behavior
concerns:
• Functional vs Execution

specific

• Nominal vs Erroneous

• Required vs Provided

• Physical vs logical

• Cross-level realization

Modeling constructs for the internal definitions of
behavior constraints

2013 Concept Presentation

class Behav iorConstraintType

Context

«atpType»
Behav iorConstraintType

BehaviorInstantiationParameter

ComputationConstraint

EAElement
TemporalConstraint

+ assertion :String

AttributeQuantificationConstraint

BehaviorConstraintBindingParameter

TraceableSpecification

«atpPrototype»
Behav iorConstraintPrototype

+refinedBehaviorConstraint 0..*

+parameter

0..*
{ordered}

+compuationConstraint

0..*

+temporalConstraint

0..*

+attributeQuantificationConstraint

0..*

*

+partBindingParameter

0..*

+instantiatedWithParameter
*
{ordered}

+part

0..* 1

«isOfType»

+type

1

A behavior constraint consists of :
§ Declarations of attribute quantification restrictions;

§ Declarations of temporal restrictions;

§ Declarations of computational restrictions;

§ Declarations of parts and parts-bindings;

§ Declarations of instantiation parameters.

 Applied to an ABS function

Example – Behavior constraint description for component
specification

2013 Concept Presentation

1. Constrained by some attribute quantifications:

2. Constrained by some temporal properties:

 Applied to some requirements:

Example – Behavior constraint description for requirement
refinement

2013 Concept Presentation

Refined by a temporal constraint description:

Modeling constructs for quantification constraints

2013 Concept Presentation

class AttributeQuantificationConstraint2

AttributeQuantificationConstraint

EAElement
Attribute

+ isExternVisible :boolean = false

EAElement
Quantification

+ expression :String

Context

«atpType»
Behav iorConstraintType

TraceableSpecification

«atpType»
Datatypes::EADatatype

LogicalEv ent

+ isExternVisible :boolean = false

BehaviorInstantiationParameter

EAElement

«atpPrototype»
FunctionModeling::FunctionPort

EAElement

«atpStructureElement»
HardwareModeling::HardwarePin

+ direction :EADirectionKind [0..1]
+ impedance :Float [0..1]
+ isGround :Boolean [0..1]
+ power :Float [0..1]
+ voltage :Float [0..1]

EAElement
LogicalTimeCondition

+ isLogicalTimeSuspended :boolean = false

+attribute

0..*

+quantification

0..*
0..*

+condition 0..*

+operand
0..*
{ordered}

+subQuantification
*

+attributeQuantificationConstraint
0..*

+refinedBehaviorConstraint 0..*

+type 1

+visableThroughFunctionPort
0..*

+visableThroughFunctionPort
*

+visableThroughHardwarePin

*

+visableThroughHardwarePin
*

+timeCondition 0..1

A quantification constraint
consists of :

§ Declaration of attributes
 data type

 corresponding structural
elements for external
access.

§ Declaration of the
quantifications
 expressions stating the

value bounds, or the logical
and arithmetical relations of
attributes

 related time conditions (e.g.
time instances or durations);

 any sub-quantification
statements

 Logical events, which are
value conditions that may
trigger state transitions when
fulfilled.

Modeling constructs for temporal constraints

2013 Concept Presentation

 class TemporalConstraint

EAElement
State

+ isInitState :Boolean = false
+ isMode :Boolean = false
+ isErrorState :Boolean = false
+ isHazard :Boolean = false

EAElement
Transition

EAElement
TemporalConstraint

+ assertion :String

BehaviorInstantiationParameter
EAElement

Ev entOccurrence

EAElement
LogicalTimeCondition

+ isLogicalTimeSuspended :boolean = false

EAElement
TransformationOccurrance

EAElement
Quantification

+ expression :String

Context

«atpType»
Behav iorConstraintType

TraceableSpecification
Dependability::Hazard

EAElement
Behav ior::Mode

+ condition :String

+initState
1

+quantificationInvariant

*

+subTemporalConstraint

*

+state

0..*

+hazardDelcaration

0..*

+readEventOccurrence?
0..1

+writeEventOccurrence!
0..1

+transition

*

+from 1

+quantificationGuard

*

+to 1

+effect

*

+modeDeclaration 0..1

+timeCondition

*

+temporalConstraint 0..*

+eventOccurrence

0..*

+endPointReference
0..1

+startPointReference
0..1

+timeInvariant
*

+inQuantification

*
{ordered}

+outQuantification

*
{ordered}

+subQuantification *

+constrainedModeBehavior

0..*

+refinedBehaviorConstraint 0..*

+timeGuard

*

A temporal constraint consists of :

§ Statements of assertions in
temporal/modal logics

§ Declaration of states
 value invariants (quantifications).

 time invariants

 Corresponding hazard, mode
declarations

 Sub temporal constraints

§ Declaration of transitions
 Linked states

 quantification guards

 time guards

 read&write event occurrences

 effects

§ Declaration of event occurrences

§ Declaration of logical time
conditions

Event Occurrences

 Note: while events describe the types and characteristics of condition changes, the
event occurrences provide support for describing how such condition changes
would affect system behaviors when taking place in a running system.

 2013 Concept Presentation

class Ev entOccurrence

BehaviorInstantiationParameter
EAElement

Ev entOccurrence

TimingDescription
Timing::Event

+ isStateChange :Boolean = true

LogicalEv ent

+ isExternVisible :boolean = false

EAElement
Transition

EAElement
TemporalConstraint

+ assertion :String

EAElement
Quantification

+ expression :String

Ev ents::Ev entFunctionClientServ erPort

+ eventKind :EventFunctionClientServerPortKind

Ev ents::Ev entFunction Ev ents::
Ev entFunctionFlowPort

EAElement

«atpPrototype»
ErrorModel::Anomaly

+ genericDescription :String

TraceableSpecification
Dependability::HazardousEv ent

+ classificationAssumptions :String [0..1]
+ controllabil ity :Controllabil ityClassKind
+ exposure :ExposureClassKind
+ hazardClassification :ASILKind
+ severity :SeverityClassKind

TraceableSpecification
Dependability::FeatureFlaw

+transition

*

+writeEventOccurrence!

0..1

+readEventOccurrence?

0..1

+eventOccurrence

0..*

+occurredFeatureFlaw

*

+occurredHazardousEvent

0..*

*

+occurredLogicalEvent 0..*

*

+occurredExecutionEvent 0..*
+occurredAnomaly

*

The declarations of events
that take place in a
running system. Such
events can be
• logical events

• execution specific events (in
terms of triggering (i.e.
EventFunction), data sending
& receiving), or

• fault and failure related
events (in terms of feature
flaws, function anomalies, or
hazard events)

Logical Time Condition

2013 Concept Presentation

class LogicalTimeCondition

EAElement
LogicalTimeCondition

+ isLogicalTimeSuspended :boolean = false

EAElement
State

+ isInitState :Boolean = false
+ isMode :Boolean = false
+ isErrorState :Boolean = false
+ isHazard :Boolean = false

EAElement
Transition

EAElement
TemporalConstraint

+ assertion :String

BehaviorInstantiationParameter
EAElement

Ev entOccurrence

EAElement
Timing::TimeDuration

+ cseCode :CseCodeType = Time
+ cseCodeFactor :int = 1
+ value :Float = 0.0

EAElement
LogicalTransformation

+ isClientServ erInterface :boolean = false
+ expression :String

EAElement
TransformationOccurrance

EAElement
Quantification

+ expression :String

+lower 0..1
+endPointReference

0..1
+startPointReference

0..1

+timeInvariant
*

+width 0..1+upper 0..1

+timeCondition

0..1
+timeGuard

*
+timeCondition

*

+timeInvariant

0..1
+timeCondition

0..1

An abstraction of
real time for
behavior
declarations
• Based on a time
duration specification
in the format of
CseCode

• Semantics given by
the associated
occurrences of
execution events
(e.g., the triggering
event of a function).

Modeling constructs for computation constraints

2013 Concept Presentation

A quantification constraint
consists of :

§ Declaration of logical
transformations for data
processing
 out-data (out), in-data (in) and local-

data (contained)

 value bounds in terms of pre-, post-,
and invariant conditions

 time invariants (i.e., duration)

 any subordinate computation
constraints

§ Declaration of expected cause-
effect paths/sequences
 connecting execution events, logical

transformations, and logical events (a
merge of the internal causality of
functions/components with the related
external execution events)

 Compositions of such paths in parallel
(strand) or in sequence (segment)

class ComputationConstraint

ComputationConstraint

Context

«atpType»
Behav iorConstraintType

EAElement
LogicalTransformation

+ isClientServerInterface :boolean = false
+ expression :String

EAElement
TransformationOccurrance

EAElement
LogicalPath

LogicalEv ent

+ isExternVisible :boolean = false

EAElement
LogicalTimeCondition

+ isLogicalTimeSuspended :boolean = false

EAElement
FunctionModeling::Operation

EAElement
Quantification

+ expression :String

TimingDescription
Timing::Ev entChain

BehaviorInstantiationParameter
EAElement

Attribute

+ isExternVisible :boolean = false

EAElement
Transition

+logicalTransformation
*

+timeInvariant0..1

+clientServerInterfaceOperation 0..*

+subComputationConstraint

*

+quantificationInvariant

*

+contained*
{ordered}

+inQuantification
*
{ordered}

+in*
{ordered}

+outQuantification
*
{ordered}

+preCondition
*

+postCondition
*

+compuationConstraint
0..*

+refinedBehaviorConstraint 0..*

+effect *

+out*
{ordered}

+logicalResponse
0..*

+strand *

+correspondingExecutionEventChain
*

+invokedLogicalTransformation
0..1

+segment *
{ordered}

+segment *
{ordered}

+strand *

+logicalPath

*

+precedingExecutionEventChain

0..*

+logicalStimulus
0..*

+transformationOccurrance

0..1

+timeCondition 0..1

+succeedingExecutionEventChain

0..*

Behavior constraint types and their instantiations in
prototypes

While a type definition provides the template for a range of behaviors, a prototype definition
specifies a particular behavior instance in a context

2013 Concept Presentation

class Behav iorConstraintParameterBinding

EAElement
Attribute

+ isExternVisible :boolean = false

Context

«atpType»
Behav iorConstraintType

EAElement
Ev entOccurrence

TraceableSpecification

«atpPrototype»
Behav iorConstraintPrototype

BehaviorInstantiationParameter

BehaviorConstraintBindingParameter

AllocateableElement
EAElement

«atpStructureElement»
FunctionModeling::
FunctionConnector

EAElement

«atpStructureElement»
HardwareModeling::
HardwareConnector

+ resistance :Float [0..1]

AllocationTarget
EAElement

«atpStructuredElement»
HardwareModeling::

LogicalBus

+ busSpeed :Float
+ busType :LogicalBusKind

EAElement

«atpStructureElement»
Env ironment::ClampConnector

Behav iorConstraintBindingEv entOccurrence

Behav iorConstraintBindingAttribute

*

+partBindingParameter

0..*

+parameter
0..*
{ordered}

+refinedBehaviorConstraint 0..* «isOfType»

+type

1

«instanceRef»

+bindingThroughClampConnector
*

«instanceRef»

+bindingThroughFunctionConnector

*

«instanceRef»

+bindingThroughLogicalBus
*

«instanceRef»

+bindingThroughHardwareConnector

*

+instantiatedWithParameter
*
{ordered}

+part

0..*1

An type instantiation is supported
by:

§ Declaration of behavior constraint
prototype

§ Declaration of assignments that
bind the behavior constraint
type’s parameters to some
contextual parameters
(instantiatedWithParameter)

Example – Declaring the behavior constraint description for
an architecture

2013 Concept Presentation

chen@md.kth.se

Structure Specification:

Corresponding Behavior Constraint Specification:

Example – Instantiation and composition of behavior constraint types in
a common context through prototypes

2013 Concept Presentation

chen@md.kth.se

Type

Prototype

Prototype

Type

Prototype

Example – Declaring the occurrences of execution events
for two system functions

2013 Concept Presentation

	EAST-ADL Native Behavior Specification
	Motivations
	Motivations (Cont.)
	EAST-ADL native behavior specification
	Roles of native behavior constraints
	An illustration of the roles of behavior constraint description
	Roles of native behavior constraints - III
	Modeling constructs for behavior constraints and their targets
	Modeling constructs for the internal definitions of behavior constraints
	Example – Behavior constraint description for component specification
	Example – Behavior constraint description for requirement refinement
	Modeling constructs for quantification constraints
	Modeling constructs for temporal constraints
	Event Occurrences
	Logical Time Condition
	Modeling constructs for computation constraints
	Behavior constraint types and their instantiations in prototypes
	Example – Declaring the behavior constraint description for an architecture
	Example – Instantiation and composition of behavior constraint types in a common context through prototypes
	Example – Declaring the occurrences of execution events for two system functions

