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Motivations 
 To address some fundamental issues in systems engineering 

 Requirements engineering 
 Are the requirements and their assumed operation situations correctly stated? 
 Are the requirements consistent/complete in regard to each other or other derived requirements?  

 Architecture design and specification 
 How to specify contracts of functions/components in regard to behavior bounds and invariants?  

• e.g. data trajectories, value invariants and transfer equations, states and state transitions. 
 How to specify the impacts of vehicle modes on functions/components and resource deployment? 
 How to support the traceability in regard to behavior concerns from requirements to design solutions at 

multiple abstraction levels?  
 What are the semantics of feature-links and function realizations?  

 Analysis for functionality and nonfuntionalities  
 Do behaviors at different abstraction levels conform to each other? What are the effect of emergent 

behaviors at a lower level? 
 What are the compostionality and composability of functions/components? 
 Is the system deadlock free according to the chosen execution scheme? 
 How does a system react to faults/failures in combination with nominal stimuli? How to support fault-

injection?  
 Verification and validation  

 How to derive test cases as well as the coverage criteria? 
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Motivations (Cont.) 
 In particular, the following language support is considered important 

for FEV (Fully Electrical Vehicles) 
 precise definitions of temporal characteristics for the definition and analysis of safety 

constraints  
 assessment of completeness and correctness of the safety requirements 
 descriptions of driving profiles, physical dynamics, power management procedures, fault 

tolerance design 
 generation and precise definition of test cases 

 

 It is seldom the case that a single tool would cover all these issues. 
 EAST-ADL as a common framework for the integration of external mature 

formalisms and architecture design specification 
 Declarations and management of architectural concerns vs The definitons of analytical models 

for analysis leverage  
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EAST-ADL native behavior specification 

 Supporting three categories of behavior constraints.  
 

 
 

 
 
 
 
 
 

 It is up to the users of EAST-ADL, in their particular design and analysis 
contexts, to decide the exact types and degree of constraints to be applied.  
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Attribute Quantification 
Constraint 
 

relating to the declarations of value attributes and the 
related acausal quantifications (e.g., U=I*R).  

Temporal Constraint  
 

relating to the declarations of behavior constraints 
where the history of behaviors on a timeline is taken 
into consideration. 

Computation Constraint 
 

relating to the declarations of cause-effect 
dependencies of data in terms of logical 
transformations (for data assignments) and logical 
paths.  



Roles of native behavior constraints 
To provide enhanced EAST-ADL support in regard to the following 
tasks 
 Refining textual statements of requirements and the assumed operation 

situations for safety engineering and test case generation. 
 Specifying the data and behavior assumptions of vehicle features for a 

more precise reasoning about feature configuration. 
 Specifying the contracts of acceptable behaviors of system functions  

together with their execution policies. 
 Specifying process and physical dynamics in environment and hardware 

platform 
 Specifying mode logics and the related application behaviors and system 

services. 
 Specifying faulty conditions, erroneous states and transitions for fault-

tolerance design and fault injections. 
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An illustration of the roles of behavior constraint 
description 
 Basic structure of EAST-ADL models 
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Roles of native behavior constraints - III 
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Modeling constructs for behavior constraints and 
their targets 
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class Behav iorContraintsExternalMapping2

EAElement
Behav ior::Mode

+ condition  :String

EAElement
Behav ior::FunctionTrigger

+ triggerCondition  :String
+ triggerPolicy  :TriggerPolicyKind

Context

 

«atpType»
Behav iorConstraintType

RequirementsRelationship
Requirements::Refine

Context
Behav ior::FunctionBehav ior

+ path  :String
+ representation  :FunctionBehaviorKind

Feature
VehicleFeatureModeling::VehicleFeature

+ isCustomerVisible  :Boolean
+ isDesignVariabil ityRationale  :Boolean
+ isRemoved  :Boolean

Context

 

«atpType»
FunctionModeling::FunctionType

+ isElementary  :Boolean

EAElement
ErrorModel::ErrorBehav ior

+ failureLogic  :String [0..1]
+ type  :ErrorBehaviorKind

inherited link: Refine->
EAElement

+function

0..1

+constrainedErrorBehavior

*

+constrainedModeBehavior

0..*

+refinedBehaviorConstraint 0..*

+constrainedFunctionTrigger
0..*

+targetedVehicleFeature

*

+constrainedFunctionBehavior

0..*

+function

0..1

+targetedFunctionType

0..*

Behavior constraints for 
declaring, merging, and 
tracing, different behavior 
concerns: 
• Functional vs Execution 

specific 

• Nominal vs Erroneous 

• Required vs Provided 

• Physical vs logical 

• Cross-level realization 



Modeling constructs for the internal definitions of 
behavior constraints 
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class Behav iorConstraintType

Context

 

«atpType»
Behav iorConstraintType

BehaviorInstantiationParameter

ComputationConstraint

EAElement
TemporalConstraint

+ assertion  :String

AttributeQuantificationConstraint

BehaviorConstraintBindingParameter

TraceableSpecification

 

«atpPrototype»
Behav iorConstraintPrototype

+refinedBehaviorConstraint 0..*

+parameter

0..*
{ordered}

+compuationConstraint

0..*

+temporalConstraint

0..*

+attributeQuantificationConstraint

0..*

*

+partBindingParameter

0..*

+instantiatedWithParameter
*
{ordered}

+part

0..* 1

«isOfType»

+type

1

A behavior constraint consists of : 
§ Declarations of attribute quantification restrictions;  

§ Declarations of temporal restrictions; 

§ Declarations of computational restrictions; 

§ Declarations of parts and parts-bindings; 

§ Declarations of instantiation parameters. 



 Applied to an ABS function 
 

Example – Behavior constraint description for component 
specification 
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1. Constrained by some attribute quantifications: 

2. Constrained by some temporal properties: 



 Applied to some requirements: 
 

Example – Behavior constraint description for requirement 
refinement 
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Refined by a temporal constraint description: 



Modeling constructs for quantification constraints 
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class AttributeQuantificationConstraint2

AttributeQuantificationConstraint

EAElement
Attribute

+ isExternVisible  :boolean = false

EAElement
Quantification

+ expression  :String

Context

 

«atpType»
Behav iorConstraintType

TraceableSpecification

 

«atpType»
Datatypes::EADatatype

LogicalEv ent

+ isExternVisible  :boolean = false

BehaviorInstantiationParameter

EAElement

 

«atpPrototype»
FunctionModeling::FunctionPort

EAElement

 

«atpStructureElement»
HardwareModeling::HardwarePin

+ direction  :EADirectionKind [0..1]
+ impedance  :Float [0..1]
+ isGround  :Boolean [0..1]
+ power  :Float [0..1]
+ voltage  :Float [0..1]

EAElement
LogicalTimeCondition

+ isLogicalTimeSuspended  :boolean = false

+attribute

0..*

+quantification

0..*
0..*

+condition 0..*

+operand
0..*
{ordered}

+subQuantification
*

+attributeQuantificationConstraint
0..*

+refinedBehaviorConstraint 0..*

+type 1

+visableThroughFunctionPort
0..*

+visableThroughFunctionPort
*

+visableThroughHardwarePin

*

+visableThroughHardwarePin
*

+timeCondition 0..1

A quantification constraint 
consists of : 

§ Declaration of attributes 
 data type 

 corresponding structural 
elements for external 
access. 

§ Declaration of the  
quantifications 
 expressions stating the 

value bounds, or the logical 
and arithmetical relations of 
attributes 

 related time conditions (e.g. 
time instances or durations); 

 any sub-quantification 
statements 

 Logical events, which are 
value conditions that may 
trigger state transitions when 
fulfilled. 



Modeling constructs for temporal constraints 
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 class TemporalConstraint

EAElement
State

+ isInitState  :Boolean = false
+ isMode  :Boolean = false
+ isErrorState  :Boolean = false
+ isHazard  :Boolean = false

EAElement
Transition

EAElement
TemporalConstraint

+ assertion  :String

BehaviorInstantiationParameter
EAElement

Ev entOccurrence 

EAElement
LogicalTimeCondition

+ isLogicalTimeSuspended  :boolean = false

EAElement
TransformationOccurrance

EAElement
Quantification

+ expression  :String

Context

 

«atpType»
Behav iorConstraintType

TraceableSpecification
Dependability::Hazard

EAElement
Behav ior::Mode

+ condition  :String

+initState
1

+quantificationInvariant

*

+subTemporalConstraint

*

+state

0..*

+hazardDelcaration

0..*

+readEventOccurrence?
0..1

+writeEventOccurrence!
0..1

+transition

*

+from 1

+quantificationGuard

*

+to 1

+effect

*

+modeDeclaration 0..1

+timeCondition

*

+temporalConstraint 0..*

+eventOccurrence

0..*

+endPointReference
0..1

+startPointReference
0..1

+timeInvariant
*

+inQuantification

*
{ordered}

+outQuantification

*
{ordered}

+subQuantification *

+constrainedModeBehavior

0..*

+refinedBehaviorConstraint 0..*

+timeGuard

*

A temporal constraint consists of : 

§ Statements of assertions in 
temporal/modal logics 

§ Declaration of states 
 value invariants (quantifications). 

 time invariants 

 Corresponding hazard, mode 
declarations 

 Sub temporal constraints 

§ Declaration of transitions 
 Linked states 

 quantification guards 

 time guards 

 read&write event occurrences 

 effects 

§ Declaration of event occurrences 

§ Declaration of logical time 
conditions 



Event Occurrences 

 Note: while events describe the types and characteristics of condition changes, the 
event occurrences provide support for describing how such condition changes 
would affect system behaviors when taking place in a running system. 
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class Ev entOccurrence 

BehaviorInstantiationParameter
EAElement

Ev entOccurrence 

TimingDescription
Timing::Event

+ isStateChange  :Boolean = true

LogicalEv ent

+ isExternVisible  :boolean = false

EAElement
Transition

EAElement
TemporalConstraint

+ assertion  :String

EAElement
Quantification

+ expression  :String

Ev ents::Ev entFunctionClientServ erPort

+ eventKind  :EventFunctionClientServerPortKind

Ev ents::Ev entFunction Ev ents::
Ev entFunctionFlowPort

EAElement

 

«atpPrototype»
ErrorModel::Anomaly

+ genericDescription  :String

TraceableSpecification
Dependability::HazardousEv ent

+ classificationAssumptions  :String [0..1]
+ controllabil ity  :Controllabil ityClassKind
+ exposure  :ExposureClassKind
+ hazardClassification  :ASILKind
+ severity  :SeverityClassKind

TraceableSpecification
Dependability::FeatureFlaw

+transition

*

+writeEventOccurrence!

0..1

+readEventOccurrence?

0..1

+eventOccurrence

0..*

+occurredFeatureFlaw

*

+occurredHazardousEvent

0..*

*

+occurredLogicalEvent 0..*

*

+occurredExecutionEvent 0..*
+occurredAnomaly

*

The declarations of events 
that take place in a 
running system. Such 
events can be  
• logical events 

• execution specific events (in 
terms of triggering (i.e. 
EventFunction), data sending 
& receiving), or  

• fault and failure related 
events (in terms of feature 
flaws, function anomalies, or 
hazard events) 



Logical Time Condition 
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class LogicalTimeCondition

EAElement
LogicalTimeCondition

+ isLogicalTimeSuspended  :boolean = false

EAElement
State

+ isInitState  :Boolean = false
+ isMode  :Boolean = false
+ isErrorState  :Boolean = false
+ isHazard  :Boolean = false

EAElement
Transition

EAElement
TemporalConstraint

+ assertion  :String

BehaviorInstantiationParameter
EAElement

Ev entOccurrence 

EAElement
Timing::TimeDuration

+ cseCode  :CseCodeType = Time
+ cseCodeFactor  :int = 1
+ value  :Float = 0.0

EAElement
LogicalTransformation

+ isClientServ erInterface  :boolean = false
+ expression  :String

EAElement
TransformationOccurrance

EAElement
Quantification

+ expression  :String

+lower 0..1
+endPointReference

0..1
+startPointReference

0..1

+timeInvariant
*

+width 0..1+upper 0..1

+timeCondition

0..1
+timeGuard

*
+timeCondition

*

+timeInvariant

0..1
+timeCondition

0..1

An abstraction of 
real time for 
behavior 
declarations 
• Based on a time 
duration specification 
in the format of 
CseCode  

• Semantics given by 
the associated 
occurrences of 
execution events 
(e.g., the triggering 
event of a function).  



Modeling constructs for computation constraints  
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A quantification constraint 
consists of : 

§ Declaration of logical 
transformations for data 
processing  
 out-data (out), in-data (in) and local-

data (contained) 

 value bounds in terms of pre-, post-, 
and invariant conditions  

 time invariants (i.e., duration) 

 any subordinate computation 
constraints 

§ Declaration of expected cause-
effect paths/sequences 
 connecting execution events, logical 

transformations, and logical events ( a 
merge of the internal causality of 
functions/components with the related 
external execution events) 

 Compositions of such paths in parallel 
(strand) or in sequence (segment) 

 

class ComputationConstraint

ComputationConstraint

Context

 

«atpType»
Behav iorConstraintType

EAElement
LogicalTransformation

+ isClientServerInterface  :boolean = false
+ expression  :String

EAElement
TransformationOccurrance

EAElement
LogicalPath

LogicalEv ent

+ isExternVisible  :boolean = false

EAElement
LogicalTimeCondition

+ isLogicalTimeSuspended  :boolean = false

EAElement
FunctionModeling::Operation

EAElement
Quantification

+ expression  :String

TimingDescription
Timing::Ev entChain

BehaviorInstantiationParameter
EAElement

Attribute

+ isExternVisible  :boolean = false

EAElement
Transition

+logicalTransformation
*

+timeInvariant0..1

+clientServerInterfaceOperation 0..*

+subComputationConstraint

*

+quantificationInvariant

*

+contained*
{ordered}

+inQuantification
*
{ordered}

+in*
{ordered}

+outQuantification
*
{ordered}

+preCondition
*

+postCondition
*

+compuationConstraint
0..*

+refinedBehaviorConstraint 0..*

+effect *

+out*
{ordered}

+logicalResponse
0..*

+strand *

+correspondingExecutionEventChain
*

+invokedLogicalTransformation
0..1

+segment *
{ordered}

+segment *
{ordered}

+strand *

+logicalPath

*

+precedingExecutionEventChain

0..*

+logicalStimulus
0..*

+transformationOccurrance

0..1

+timeCondition 0..1

+succeedingExecutionEventChain

0..*



Behavior constraint types and their instantiations in 
prototypes  

While a type definition provides the template for a range of behaviors, a prototype definition 
specifies a particular behavior instance in a context 

2013 Concept Presentation 

 

class Behav iorConstraintParameterBinding

EAElement
Attribute

+ isExternVisible  :boolean = false

Context

 

«atpType»
Behav iorConstraintType

EAElement
Ev entOccurrence 

TraceableSpecification

 

«atpPrototype»
Behav iorConstraintPrototype

BehaviorInstantiationParameter

BehaviorConstraintBindingParameter

AllocateableElement
EAElement

 

«atpStructureElement»
FunctionModeling::
FunctionConnector

EAElement

 

«atpStructureElement»
HardwareModeling::
HardwareConnector

+ resistance  :Float [0..1]

AllocationTarget
EAElement

 

«atpStructuredElement»
HardwareModeling::

LogicalBus

+ busSpeed  :Float
+ busType  :LogicalBusKind

EAElement

 

«atpStructureElement»
Env ironment::ClampConnector

Behav iorConstraintBindingEv entOccurrence

Behav iorConstraintBindingAttribute

*

+partBindingParameter

0..*

+parameter
0..*
{ordered}

+refinedBehaviorConstraint 0..* «isOfType»

+type

1

«instanceRef»

+bindingThroughClampConnector
*

«instanceRef»

+bindingThroughFunctionConnector

*

«instanceRef»

+bindingThroughLogicalBus
*

«instanceRef»

+bindingThroughHardwareConnector

*

+instantiatedWithParameter
*
{ordered}

+part

0..*1

An type instantiation is supported 
by: 

§ Declaration of behavior constraint 
prototype   

§ Declaration of assignments that 
bind the behavior constraint 
type’s parameters to some 
contextual parameters 
(instantiatedWithParameter) 



Example – Declaring the behavior constraint description for 
an architecture 
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Structure Specification: 

Corresponding Behavior Constraint Specification: 



Example – Instantiation and composition of behavior constraint types in 
a common context through prototypes 
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Type 

Prototype 

Prototype 

Type 

Prototype 



Example – Declaring the occurrences of execution events 
for two system functions 
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